- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Khandelwal, Vedant (4)
-
Roy, Kaushik (4)
-
Sheth, Amit (4)
-
Chakraborty, Megha (1)
-
Dolbir, Nathan (1)
-
Gaur, Manas (1)
-
Goswami, Raxit (1)
-
Heckman, Heather (1)
-
Malekar, Jinendra (1)
-
Pallagani, Vishal (1)
-
Surana, Harshul (1)
-
Venkataraman, Revathy (1)
-
Vera, Valerie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Roy, Kaushik; Khandelwal, Vedant; Vera, Valerie; Surana, Harshul; Heckman, Heather; Sheth, Amit (, Proceedings of the AAAI Conference on Artificial Intelligence)This paper addresses the time-intensive nature of systematic reviews (SRs) and proposes a solution leveraging advancements in Generative AI (e.g., ChatGPT) and external knowledge augmentation (e.g., Retrieval-Augmented Generation). The proposed system, GEAR-Up, automates query development and translation in SRs, enhancing efficiency by enriching user queries with context from language models and knowledge graphs. Collaborating with librarians, qualitative evaluations demonstrate improved reproducibility and search strategy quality. Access the demo at https://youtu.be/zMdP56GJ9mU.more » « less
-
Roy, Kaushik; Khandelwal, Vedant; Goswami, Raxit; Dolbir, Nathan; Malekar, Jinendra; Sheth, Amit (, Proceedings of the AAAI Conference on Artificial Intelligence)After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve:(a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies.more » « less
-
Sheth, Amit; Gaur, Manas; Roy, Kaushik; Venkataraman, Revathy; Khandelwal, Vedant (, IEEE Internet Computing)
An official website of the United States government
